Prognostic effect of single versus multiple somatic mutations in non-small cell lung cancer (NSCLC)

Kevin Jao, Pascale Tomasini, Suzanne Kamel-Reid, Ming-Sound Tsao, Gregorz J. Korpanty, Céline Mascaux, Geoffrey Liu, Natasha B. Leighl, Ronald Feld, Penelope A. Bradbury, Melania Pintilie, Frances A. Shepherd

Princess Margaret Cancer Centre
Division of Medical Oncology and Hematology
Thoracic Oncology Group
Princess Margaret Cancer Centre
NOYCIA 2015
May 31st, 2015
Background and Methods

• Prognostic role of single or multiple molecular mutations in early stage NSCLC still unclear
 – *P53*, *KRAS* (Tsao et al. 2007)
 – *KRAS* (Shepherd et al. 2013)
 – *KRAS, P53, EGFR* (Kosaka et al. 2009)

• Retrospective/Biomarker correlation study
 – Patients diagnosed with NSCLC from 1998-2014
 – Available tissue was analyzed with next-generation sequencing with either MiSeq/Proton or Sequenom
 – Mutation status was correlated with clinical and demographic data retrieved from electronic patient records
Mutations

Mutations Detected (Whole Cohort)

- P53 (152) 35%
- KRAS (92) 21%
- EGFR exon 19 or 21 (50) 12%
- EGFR other (24) 6%
- PIK3CA (16) 4%
- BRAF (12) 3%
- STK11 (11) 3%
- ERBB (11) 3%
- CTNNB1 (10) 2%

Common Co-Mutations

- p53 + non EGFR/KRAS mutation (34) 27%
- KRAS + p53 (33) 26%
- EGFR (ex 19/21)+ P53 (26) 12%
- KRAS + other mutations (15) 7%
- Two EGFR mutations (9) 5%
- EGFR (ex 19/21)+ other mutations (7) 3%
- Other concurrent mutations (4) 1%
Prognostic effect of Multiple Mutations in Stage I-III Resected NSCLC

P = 0.0008
HR 2.13, 95% CI 1.12-4.04, p = 0.021 (1 vs 0)
HR 3.07, 95% CI 1.62-5.81, p = 0.0006 (≥2 vs 0)

Adjusted HR:
(1 vs 0) 1.83, 95% CI: 0.96-3.51, p= 0.068
(≥2 vs 0) 2.26, 95% CI: 1.17-4.36, p = 0.015

P = 0.15
HR 2.22, 95% CI 0.87-5.65, p = 0.10 (1 vs 0)
HR 2.46, 95% CI 0.78-5.14, p = 0.06 (≥2 vs 0)
Stage I-III resected subgroups

<table>
<thead>
<tr>
<th>Mutation</th>
<th>No. of patients</th>
<th>95% CI</th>
<th>Hazard Ratio</th>
<th>P-Value</th>
<th>95% CI</th>
<th>Hazard Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>157</td>
<td>1.05-2.13</td>
<td>1.49</td>
<td>0.025</td>
<td>1.11</td>
<td>0.68-1.82</td>
<td>0.67</td>
</tr>
<tr>
<td>Positive</td>
<td>56</td>
<td>1.05-2.13</td>
<td>1.49</td>
<td>0.025</td>
<td>1.11</td>
<td>0.68-1.82</td>
<td>0.67</td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>179</td>
<td>1.4-3.06</td>
<td>2.07</td>
<td>0.0002</td>
<td>0.66</td>
<td>2.02</td>
<td>0.62</td>
</tr>
<tr>
<td>Positive</td>
<td>34</td>
<td>1.4-3.06</td>
<td>2.07</td>
<td>0.0002</td>
<td>0.66</td>
<td>2.02</td>
<td>0.62</td>
</tr>
<tr>
<td>P53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>107</td>
<td>0.97-1.85</td>
<td>1.34</td>
<td>0.08</td>
<td>1.3</td>
<td>3.34</td>
<td>0.002</td>
</tr>
<tr>
<td>Positive</td>
<td>106</td>
<td>0.97-1.85</td>
<td>1.34</td>
<td>0.08</td>
<td>1.3</td>
<td>3.34</td>
<td>0.002</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mut</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS alone</td>
<td>27</td>
<td>1.25-5.55</td>
<td>2.63</td>
<td>0.01</td>
<td>0.74</td>
<td>6.37</td>
<td>0.16</td>
</tr>
<tr>
<td>KRAS + P53</td>
<td>17</td>
<td>1.98-10.94</td>
<td>2.93</td>
<td>0.0004</td>
<td>0.94</td>
<td>8.47</td>
<td>0.06</td>
</tr>
<tr>
<td>KRAS + other</td>
<td>11</td>
<td>1.3-6.58</td>
<td>4.65</td>
<td>0.009</td>
<td>0.19</td>
<td>5.31</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Prognostic summary

• Mutational status is significantly prognostic in resected NSCLC
 – Multiple mutations are associated with worse outcomes compared to 0 vs 1 mutations on univariate and multivariate analysis
 – KRAS and EGFR status are associated with poorer DFS
 – P53 status is associated with poorer OS
 – *Additional data to be shown tomorrow morning*

• Larger datasets will be required for validation
Acknowledgements

• Dr Frances A. Shepherd*
• Dr. Ming-Sound Tsao*
• Dr. Suzanne Kamel-Reid*
• Dr. Pascale Tomasini*
• Dr. Gregorz Korpanty
• Dr. Céline Mascaux
• Melania Pintilie*
• Marguerite Ennis

• Special thanks
 – Dr. Natasha B Leighl
 – Dr. Geoffrey Liu
 – Dr. Penelope Bradbury
 – Dr. Ronald Feld
 – Dr. Catherine Labbé
 – Dr. Mark Doherty
 – Dr. Alona Zer

 – And the rest of the great staff at PMCC!