The Cardiovascular Safety of Aromatase Inhibitors and Tamoxifen in Post-Menopausal Women with Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Farzin Khosrow-Khavar MSc1,2, Kristian B. Filion PhD1,2,3, Shatha Al-Qurashi MD4, Nazi Torabi MLIS5, Nathaniel Bouganim MD6, Samy Suissa PhD1,2, Laurent Azoulay PhD1,2,4

1 Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
2 Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
3 Division of Clinical Epidemiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
4 Department of Oncology, McGill University, Montreal, Quebec, Canada
5 McGill Library, McGill University, Montreal, Quebec, Canada
6 Department of Oncology, Cedar Cancer Center, McGill University Health Center, Montreal, Quebec, Canada

NOYCIA 2016
Background

• Aromatase inhibitors (AI) and tamoxifen are widely used in treatment of post-menopausal women with hormone-receptor positive breast cancer

• Meta-analysis indicate better efficacy associated with AIs in RCTs directly comparing AIs to tamoxifen

• However, these studies also indicate increased risk of cardiovascular adverse events associated with AIs
American Society of Clinical Oncology Guidelines

THE BOTTOM LINE (CONTINUED)

Tradeoffs of Benefits and Risks
- Benefits: increasing overall survival and distant disease-free survival (DFS), reducing breast cancer-specific mortality, decreased risk of recurrence, decreased risk of contralateral breast cancer
- Harms: endometrial cancer (if continuing tamoxifen), hot flashes and other menopausal symptoms (with either tamoxifen or AIs), deep vein thrombosis or pulmonary embolism (tamoxifen), ischemic heart disease (AI), osteopenia/osteoporosis (AI), uterine cancer (tamoxifen)

CONTRAINDICATIONS
- Women of premenopausal endocrine status, including pregnant women (4.1, 8.1)
- Patients with demonstrated hypersensitivity to ARIMIDEX or any excipient (4.2)

WARNINGS AND PRECAUTIONS
- In women with pre-existing ischemic heart disease, an increased incidence of ischemic cardiovascular events occurred with ARIMIDEX use compared to tamoxifen use. Consider risks and benefits (5.1, 6.1)
- Decreases in bone mineral density may occur. Consider bone mineral density monitoring (5.2, 6.1)
- Increases in total cholesterol may occur. Consider cholesterol monitoring (5.3, 6.1)
Cardioprotective Mechanisms of Tamoxifen

- Tamoxifen decreases levels of total cholesterol, LDL-C, and increases HDL-C levels in RCTs
- Tamoxifen decreases levels of C-reactive protein and fibrinogen
- Tamoxifen has anti-oxidant activities which protect cholesterol from harmful oxidation
Objectives

- To conduct a comprehensive systematic review and meta-analysis of cardiovascular safety of AIs and tamoxifen

Adjuvant Trials
- Upfront AI vs T
- Al vs Sequential T+Al
- Upfront T vs P

Extended-Adjuvant Trials
- Al vs P
- T vs P
Methods

- **Search Strategy:**
 - *Databases:* Pubmed, Embase, Cochrane CENTRAL, WHO ICRTP, Clinicaltrials.gov
 - *Population:* Female
 - *Intervention:* Aromatase Inhibitors (letrozole, anastrozole, exemestane) or tamoxifen
 - British Medical RCT Hedge where appropriate

- **Inclusion Criteria:**
 - *Population:* Post-menopausal women with diagnosis of breast-cancer
 - *Outcome:* Studies reporting cardiovascular events (excluding VTE, hypertension, hypercholesterolemia)

- **Exclusion Criteria:**
 - 1st or 2nd generations AIs or raloxifene
 - Pre-menopausal population
 - Primary prevention trials
 - Less 100 patients
 - Studies where primary indication for endocrine therapy is not breast cancer
Quality Assessment and Analysis

Quality Assessment:
• Cochrane collaboration tool for assessing risk of bias
• Screening and quality assessment conducted independently by two reviewers

Analysis:
• Relative risk of cardiovascular adverse events obtained for each RCT
• Pooled analysis by RCT design using DerSimonian-Laird Random-Effects Analysis
• Secondary analysis: Ischemic heart disease as the outcome
• Sensitivity Analysis: Fixed-effects analysis
Study Flow Diagram

Records identified through database search (n=15352)

Duplicates (n=5388)

Records undergoing title/abstract screening (n=9964)

Not relevant topic-journal title/abstract (n=8957)
Not relevant topic-conference abstract (n=394)
Full text-does not include CV endpoints (n=217)
Prevention RCTs (n=149)
Reviews (n=112)
Pre-menopausal population (n=63)
Not English (n=22)
Observational (n=17)

Studies meeting inclusion criteria (n=33)

RCTs included in the quantitative analysis (n=16)
Meta-Analysis of Cardiovascular Adverse Events by RCT Design

<table>
<thead>
<tr>
<th>Trials</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Weight</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant-Upfront (AI vs T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATAC</td>
<td>127</td>
<td>104</td>
<td></td>
<td>19.89</td>
</tr>
<tr>
<td>BIG 1-98</td>
<td>169</td>
<td>152</td>
<td></td>
<td>28.68</td>
</tr>
<tr>
<td>Abou-Touk et al.</td>
<td>4</td>
<td>3</td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>N-SAS-BCO3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>ITA</td>
<td>17</td>
<td>14</td>
<td></td>
<td>2.76</td>
</tr>
<tr>
<td>ARNO95</td>
<td>9</td>
<td>4</td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td>IES</td>
<td>259</td>
<td>211</td>
<td></td>
<td>43.88</td>
</tr>
<tr>
<td>Paridaens et al.</td>
<td>22</td>
<td>12</td>
<td></td>
<td>2.84</td>
</tr>
<tr>
<td>Subtotal (I-squared: 0%)</td>
<td>100</td>
<td></td>
<td></td>
<td>1.19 [1.07, 1.34]</td>
</tr>
</tbody>
</table>

Adjuvant - Upfront vs Sequential (AI vs T->AI)					
BIG 1-98	103	108		40.17	0.96 [0.74, 1.24]
TEAM	405	326		59.83	1.23 [1.07, 1.42]
Subtotal (I-squared: 64.29%)	100			1.11 [0.87, 1.42]	

Experimental decreases risk

Experimental increases risk
Meta-Analysis of Cardiovascular Adverse Events by RCT Design

<table>
<thead>
<tr>
<th>Trials</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Weight</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Adjuvant (AI vs P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA.17</td>
<td>149</td>
<td>144</td>
<td></td>
<td>1.04 [0.83, 1.29]</td>
</tr>
<tr>
<td>Extended Adjuvant (T vs NT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS</td>
<td>127</td>
<td>163</td>
<td>31.34</td>
<td>0.78 [0.62, 0.98]</td>
</tr>
<tr>
<td>SITAM-01</td>
<td>17</td>
<td>17</td>
<td>4.41</td>
<td>1.02 [0.52, 1.98]</td>
</tr>
<tr>
<td>NSABP-B14</td>
<td>6</td>
<td>3</td>
<td>1.05</td>
<td>1.95 [0.49, 7.77]</td>
</tr>
<tr>
<td>UK Over 50s</td>
<td>302</td>
<td>319</td>
<td>63.2</td>
<td>0.95 [0.82, 1.09]</td>
</tr>
<tr>
<td>Subtotal (I-squared: 10.83%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjuvant - Upfront (T vs P or NT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottish</td>
<td>32</td>
<td>47</td>
<td>78.58</td>
<td>0.67 [0.43, 1.04]</td>
</tr>
<tr>
<td>NSABP-B14 phase 1</td>
<td>8</td>
<td>12</td>
<td>18.79</td>
<td>0.67 [0.28, 1.64]</td>
</tr>
<tr>
<td>Cummings et al.</td>
<td>1</td>
<td>2</td>
<td>2.63</td>
<td>0.49 [0.05, 5.28]</td>
</tr>
<tr>
<td>Subtotal (I-squared: 0%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental decreases risk

Experimental increases risk

RR

NOYCIA
Novartis Oncology Young Canadian Investigator Awards 2016
Secondary Analysis-Ischemic Heart Disease

• Upfront Adjuvant Al vs T → RR: 1.30 (95% CI: 1.11-1.53)

• Extended adjuvant Al vs P → RR: 1.04 (95% CI: 0.83-1.29)

• Extended Adjuvant T vs P → RR: 0.91 (95% CI: 0.60-1.40)

• Upfront adjuvant T vs P → RR: 0.66 (95% CI: 0.45-0.98)
Conclusions

• The increased risk of cardiovascular disease associated with AIs in RCTs comparing AIs to tamoxifen should be interpreted with caution.

• The augmented cardiovascular risk associated with AIs in adjuvant trials can be accounted for by the cardioprotective effects of tamoxifen.

• This new evidence may guide the assessment of risk and benefit ratio of aromatase inhibitors and tamoxifen.
Acknowledgements

Supervisors
Dr. Laurent Azoulay
Dr. Samy Suissa

Collaborators
Dr. Kristian Filion
Dr. Shatha Al-Qurashi
Dr. Nathaniel Bouganim
Nazi Torabi