Integration of Somatic Molecular Profiling for Rare Epithelial Gynecologic Cancer Patients

Victor Rodriguez Freixinos, Stephanie Lheureux, Victoria Mandilaras, Blaise Clarke, Neesha Dhani, Helen Mackay, Marcus Butler, Lisa Wang, Lillian L. Siu, Suzanne Kamel-Reid, Tracy Stockley, Philippe Bedard, Amit M. Oza

NOYCIA 2016
Background

Rare gynecologic malignancies (R-GYN):

• Defined as <6/100,000/year\(^1\)
• Represent >50% of gynecologic cancers\(^2\)
• Involve >30 histologic subtypes\(^2\)

Rare Epithelial Gynecologic Cancers
- Cervical adenocarcinoma
- Ovarian low grade
- Ovarian transitional cell/Brenner tumor
- Ovarian squamous
- Endometrial papillary serous/squamous
- Vulvar and Vaginal cancers
- Clear cell cancers
- Carcinosarcomas
- Mucinous cancers
- Small cell cancers

Rare Non-epithelial Gynecologic Cancers
- Gynecologic sarcomas
- Sex cord tumors
- Germ cell tumors
- Gestational trophoblastic tumors

1. http://www.rarecare.eu

Presented by: Victor Rodriguez Freixinos
Patient Characteristics

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th># Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Adenocarcinoma/Adenosquamous</td>
<td>11</td>
</tr>
<tr>
<td>Vulvar</td>
<td>12</td>
</tr>
<tr>
<td>Mucinous</td>
<td>17</td>
</tr>
<tr>
<td>Uterine Serous</td>
<td>24</td>
</tr>
<tr>
<td>Carcinosarcoma</td>
<td>32</td>
</tr>
<tr>
<td>Clear Cell</td>
<td>38</td>
</tr>
<tr>
<td>Low Grade</td>
<td>54</td>
</tr>
<tr>
<td>Others$</td>
<td>6</td>
</tr>
</tbody>
</table>

* Others: Vaginal, Transitional/ Brenner Ovarian, Small Cell, Ovarian squamous

Patients Profiled

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (range)</td>
<td>59.5 (21-88)</td>
</tr>
<tr>
<td>Median Lines of Prior Treatments (range)</td>
<td>1 (0-4)</td>
</tr>
<tr>
<td>ECOG Performance Status (0/1)</td>
<td>69% / 31%</td>
</tr>
</tbody>
</table>

Presented by: Victor Rodriguez Freixinos
Molecular Profiling Results

Patients Profiled	N=194
≥ 1 somatic mutation, n (%) | 139 (72%) (range 1-4)
Archival sample from primary tumor vs metastatic archival sample for profiling | 132 (68%) vs 62 (31%)
Median time from diagnosis to profiling | 18 months (range 1-361)

Presented by: Victor Rodriguez Freixinos
Best Tumor Reduction in Therapeutic Trials

Genotype-Unmatched
RECIST v1.1 ORR 7/28 evaluable (25%)

Median tumor size reduction -7% (-60 to +31)

Genotype-Matched
RECIST v1.1 ORR 8/27 evaluable (30%)

Median tumor size reduction -18% (-70 to +36)

* Progression on non-target lesions
^ p=0.16

Presented by: Victor Rodriguez Freixinos
TTP on Genotype-Matched Trials vs Genotype-Unmatched vs Standard Therapy

<table>
<thead>
<tr>
<th></th>
<th>TTP</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTP Genotype-Matched (N=24)</td>
<td>5.5 months (1.2-22)</td>
<td>0.03</td>
</tr>
<tr>
<td>TTP Genotype-Unmatched (N=25)</td>
<td>2.7 months (0.7-18.9)</td>
<td></td>
</tr>
<tr>
<td>TTP Standard therapy post-Profiling (N=26)</td>
<td>2.7 months (0.3-14.6)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Presented by: Victor Rodriguez Freixinos
Conclusions

- Somatic molecular profiling frequently identifies actionable molecular alterations in R-GYN cancer patients.
- Somatic molecular profiling can be integrated into the routine care of R-GYN cancer patients, expanding the spectrum of therapeutic approaches in a population with limited standard options.
- Clinical activity was seen in genotype-matched and unmatched patients on trials.
- Median TTP was longer with genotype-matched targeted trials compared to unmatched trials and standard therapy post-profiling.
- Prospective randomized trials are needed with integrated somatic genotyping.